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Abstract—The biological scientific linked data is large graph
that contains billions of triples representing links between mas-
sive microorganisms. Now it is challenged by the growing graph
size and the costly queries that require massive traversals. This
work designs a resilient index graph to model the query pattern.
According to given query pattern, it indexes graph traversals
between the starting and objective vertices and represents them
as index edges. Through visiting index edges, the query can be
completed in one hop without repeatedly traversing the graph. It
can bound the query to limited traversals and thus could response
in real time. Moreover, the index graph can be constructed
using BSP computing model with constant rounds. We developed
a prototype system based on Titan, and experimental results
showed that the index graph can complete complex biological
benchmark queries within 400 milliseconds on average.

Keywords—Linked Data, Graph Index, Query Pattern, Big
Graph.

I. INTRODUCTION

Nowadays, many biological scientific datasets are large
graphs that contain billions of nodes and edges[1], and the
graph databases have become the first choice to address query
problems of large biological datasets[2], [3], [4], [5]. One
typical example is the WDCM that is a large microorganism
graph and aims to provide integrated information for microbial
resource centers and microbiologists all over the world[1]. It
provides metadata information on 708 culture collections from
72 countries and regions. Currently, WDCM includes >368
000 strains from 103 culture collections in 43 countries and
regions and provides free access to all these graph data at
www.wdcm.org.

With the continually growing of the biological datasets, it
is nearly impossible to use only a single machine to manage
graph data and satisfy the real time access requirements.
Current WDCM graph has more than 24 millions of vertices
managed in a single-machine Virtuoso platform, and in the
close future this size might be scaled up to 1 billion or more.
To understand this trend, consider the web and social network
data that have been explosively increased recent years. In
2000 the web graph had only 2.1 billion vertices and 15
billion edges[6]; now, nearly all major search and social net
companies can support a web graph of 1 trillion vertices or
more. Another bioinformatics example, work[5] attempts to
solve the genome assembly problem by constructing the de
Brujin graph that contains as many as 4% vertices where k is

at least 20. Distributed large graphs which serve as important
data structures to manage billions of vertices[7], [8], should
be the suitable approach to address the large biological dataset
query problem.

Although a lot of indices efforts have been devoted to
efficient graph analysis, few existing methods are designed
for multi-hop real-time querying of very large graphs. To
understand the challenge, consider the super-linear space
and/or super-linear construction time most state-of-the-art
works required to build the indices. For example, the R-Join
approach[9] for subgraph matching is based on the 2-hop
index. The time complexity of building such an index is O(n*),
where n is the number of vertices. In large graphs, the value
of n is on the scale of 1 billion (10°) and any super-linear
approach will become unrealistic[7]. These features make it
difficult to use big data systems such as MapReduce[10],
BigTable[11] to obtain scale-out capability.

Consider another example, a graph database may contain
too many traversal paths if the graph are large and diverse.
Yan et. al randomly extracted 10, 000 graphs from the antiviral
screening database and found out that there are totally around
100, 000 paths with length up to 10, but most of them are
redundant[12]. Therefore, it is inefficient to index all the multi-
hop traversals in the graph. In this paper, we propose the index
graph that just indexes limited parts of the graph and can be
constructed in limited BSP computation rounds.

There are also many database systems that relies on index
to optimize the graph traversal or subgraph matching to
support the real-time query of big graph, i.e., gStore[13], Titan,
Virtuoso, Blazegraph. gStore firstly uses the graph matching
to complete the graph query. Titan in the other side uses the
Bigtable[11] systems such as HBase or Cassandra to manage
the large graph, and relies on the external indices such as
Elasticsearch or Solr to speedup the graph query. These indices
focus on the query of rows or properties and perform well in
count and sort operations. The systems that incorporate them
perform well for one-hop query, but not for multi-hop queries
that require massive accesses. However, in query processing
of large biological datasets graph, the most time-consuming
parts are the multi-hop graph traversals and/or the subgraph
matching.

The resilient index graph proposed in this work is used
to address these problems. It uses the graph itself to store



and manage the index space and only covers limited parts of
the biological graph to balance the query processing and the
complexity. For graph query, it effectively improves the real-
time query performance and reduces the number of hops that
required in the original query. For the index data structures,
it indexes the traversal paths rather than the vertex, and can
be constructed in parallel using BSP computing model. In this
work, we construct the index graph for WDCM biological
datasets and obtain impressive real-time query performance
compared to the well-known Virtuoso implementation. Besides
its potential in improving the query performance of multi-
machine graph databases, it can support optimization of single-
machine graph database systems such as Titan-BDB as well.
This work is organized as follows. Section II discusses the
backgrounds of the graph database, the graph query approach,
and graph indices. Section III analyzes the performance prob-
lems of biological graph queries and proposes the index graph
based optimization. Section IV constructs the index graph
for these graphs to optimize the multi-hop queries. Section
V uses biological datasets to verify the effectiveness of the
index graph and discusses difference between graph index and
existing indices. In Section VI we conclude this work.

II. BACKGROUND

In this section, we discuss the background of graph traver-
sals and index structures in distributed database systems, and
analyze the features of graph indices that support very large
biological scientific datasets.

A. Graph Traversal and Gremlin

Graph traversal refers to the process of visiting (checking
and/or updating) vertices in a graph. Graph traversal is an
effective approach for querying large graphs that contain
billions of vertices. It can limit the traversals only to interested
vertices in large graphs without incurring much computation.

Gremlin[14] is a graph traversal language and virtual ma-
chine developed by Apache TinkerPop. Titan is natively inte-
grated with TinkerPop graph stack and is open sourced with
the liberal Apache 2 license. It uses existed Bigtable storage
backends such as HBase to store the graph that contains
hundreds of billions of vertices and edges, and is optimized
for graph traversal querying in multi-machine cluster. In this
work, we use Titan to manage the large biological datasets
and gremlin to realize the corresponding graph query.

B. Multi-hop Query & Graph Index

For many graph-related biological applications, the graph
query problem can be described as follows: given a graph
database GG and a graph query ¢, find all the matching in which
q is a subgraph[12]. Multi-hop query is costly because one has
to not only access the whole graph database but also check
subgraph isomorphism which is NP-complete. Clearly, it is
necessary to build graph indices in order to help processing
graph queries.

XML query is one such type of graph queries built to model
multi-hop expressions. Various indexing methods [15], [16],

TABLE I
WDCM QUERY CLASSIFICATION
Hops Queries
one-hop | QI, Q2, Q3, Q9, Q10, Q11, Q12, Q13, Q14, Q15, QI8, Q19, Q20
two-hop Q4, Q5, Q6, Q7, Q8, Q16, Q17, Q21, Q22, Q23, Q24 ,Q25

[17] have been developed. However, consider the super-linear
construction complexity[9] and the redundant edges[12] in the
real graphs, the construction of the path index across the whole
graph is both hard and inefficient.

The index graph proposed in this work shares similar ideas,
but focuses on using the graph structure to design the indices
and scale up to the large biological scientific datasets.

III. PROBLEM ANALYSIS AND INDEX GRAPH

In this section, we analyze the performance bottleneck when
querying biological datasets and propose our index graph
based approach. Further, we design algorithms for the index
construction and updating.

A. Problems

In order to figure out the reasons that limit the query per-
formance, we load a biological dataset WDCM into Virtuoso,
Jena, and Titan, separately, and choose 26 standard queries
from workloads. The classification of these queries is based
on the length of traversal steps and the results are presented
in Table I. In order to simplify the testing, Virtuoso, Jena, and
Titan are run on a single machine.

As shown in Fig. 1, for all three query implementations, the
one-hop query just uses 1 second or less, but the two-hop query
uses more than 5 seconds, which cannot satisfy real-time query
requirements. This is because two-hop queries traverse and/or
match at least three different kinds of vertices that randomly
distributed in the database. The more types of vertices, the
more paths to traverse, which means the more times of the
vertex accesses. Unluckily, in biological applications, these
multi-hop queries take up nearly 50% of query workloads.

Note that for small datasets the queries can be optimized by
loading all vertices into memory. When the data is too large to
be loaded into memory, the traversals will suffer from the slow
vertex access. In distributed systems, as the linked vertices and
edges are distributed across machines, it is nearly impossible
to complete all traversals and/or matching in milliseconds or
seconds. This work proposes an index graph to address these
kinds of queries.

B. The Index Graph

The index graph proposed in this work uses the graph itself
to answer the multi-hop graph traversal problem. It indexes
the multi-hop traversal paths via directly linking the starting
vertices and the objective vertices through index edges. Thus,
the query can be completed via traversing the index edges in
one hop without indirectly traversing through internal vertices.
Since most graph databases can complete the one-hop traversal
in milliseconds, the index graph makes the existing graph
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Fig. 1. The Query Time of Biological Datasets using Virtuoso, Jena, and Titan

database obtain the real-time query capability, without loading
all data into memory.

The challenge of index graph is how to maintain the index
graph space as small as possible while maintaining sufficient
index capability. Before addressing these issues, we firstly
define the index graph and model the main concepts of our
approach. Assume the original graph G(V, E), where V is the
vertex set, I/ is the edge set, and each vertex and each edge
have their own type, respectively. The index graph is defined
as follows.

Definition 1: If Gindez(Vi, E;) is the index graph of
G(V, E), it holds that V; C Vand if there is one path
(v1,v2), (Va,v3), -+, (Un—1,Vn) in origingal graph, then
there is an edge (v1,v,)in F; and vice versa.

The index graph is used to maintain index edges for the
original graph. The index edges here cover the starting and
objective vertices that the traversal might search in the original
graph. If there is an edge (v;, v;) € E;, it holds that v;,v; € G
is connected by a traversal path.

The two-hop index graph is a special case of the index
graph. It only covers the vertices related to 2-hop traversals and
reduces the traversals from the original two hops to one hop.
A typical example about the two-hop index graph is presented
in Fig. 2(b). It indexes the two-hop traversals that pass vertices
with type c. Therefore, the (b, e) in the index graph represents
(b,c) and {(c,e) in the original graph. Generally, the 2-hop
index graph Ga; space that covers the whole G is still too
large as it has a larger number of edges but most of them are
useless. Because users might just query traversals that pass
vertices with fixed biological type and/or microorganism id.
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Fig. 2. Two-Step Index Graph.

Therefore, we give the type-fixed two-hop index graph. Be-
fore definition, we model the fixed type traversal pattern. The
traversal Vi —(xEdge)—>Vr—(yEdge)—>V; represents all
traversals that start from vertices of type V; and reach vertices
of Type Vr through the out edge with type xEdge, and then
reach vertices of Type V5 through the out edge yFEdge.

Definition 2: A type-fized two-step index graph
G2;(V1, Vo, E, V1) is a two-step index graph that only
indexes traversals Vi —(xEdge)—>Vr—(yEdge)—>V;.

C. Features of the Index Graph

As discussed in the previous section, index graph is related
to the traversal pattern. Generally, there are many multi-hop
traversal patterns in an application system. It might lead to
large memory consumption if we build index graph for each
of them. In this section, we present features to enable the
maintaining of multiple index graphs in a single graph.

Now consider the G;; that is the union of index graphs G;
and G of the same original graph G, and check whether it is
a complete index graph.

Feature 1: For any index graph G;, G of G,

Gij = G; UGy, it holds that Gyj; is an index graph of G.

It is very easy to prove that the union operations can
maintain the completeness of the index graph. We can store
multiple index graphs together to improve space utilization.

Feature 2: For any index G;(V;, E;) of G, G5 = GUG;,
it holds that for any vy, vo € V;, if thereis a path that
satis fies the query pattern of G;, there is an index edge
(v1,v2) € E; and vice versa.

Feature 2 makes it feasible to store the index graph and
the original graph in a single graph. Although G is not a
complete index graph, G fully inherits the index capability
of G;. This feature facilitates the management and the use of
the index graph to help accelerating the graph querying.

With the filtering and the merging, we can maintain the
index graph in a small size. Next, we will discuss the con-
struction and the updating of the index graph based on these
definitions and features.

In order to satisfy the WDCM two-hop query requirement,
this work focuses on the two-hop index graph and designs the



Algorithm 1 Two-hop Index Graph Construction

Algorithm 2 Two-hop Index Graph Updating

Input: G(V, E), Vi, zEdge, yEdge

Description: xEdge is the edge type from source vertices to
Vr vertices, and yFEdge is the edges from Vr vertices to dest
vertices

Output: index graph G;(V;, E;, V)

1: for each v € V do

2: if v.outE(zEdge).inV().type == Vr then
3: v.broadcast(v.outE(z Edge).inV(), V.id())
4: bsp sync and comm.

5. for each v € V(V7) do

6: receive msgs

7: for each msg € msgs) do

8: v.broadcast(v.outE(y EF'dge).inV(), msg)
9: bsp sync and comm.

10: for each v € V do

11: receive msgs

12: for each msg € msgs) do

13: addEdge(msg.vertex, v)

14: bsp sync and comm.
15: construct the index graph G, based on the added edges
16: return G;

corresponding algorithms. Researchers can extend the index
graph to optimize other types of multi-hop querying and
processing, i.e., three-hop querying.

D. The Construction and Update Algorithm

This section presents the construction and update algorithms
of the index graph. We can implement these algorithms on
existed systems such as Spark to accelerate the construction
and support the online data collecting and updating.

1) Index Graph Construction Algorithm: With conceptions
and features discussed above, this section designs an index
graph construction algorithm Algorithm 1 to support the
two-hop index graph construction using BSP parallel model.
The BSP(Bulk Synchronous Parallel model)[18] abstracts the
parallel processing as the iterative computation steps and
synchronization steps, and is used in many batch based graph
processing such as Pregel[19]. Here we use the BSP to design
the index graph construction algorithm.

As shown in Algorithm 1, the construction includes the
following three rounds. In the first round, each vertex that has
edges xFEdge to vertices of Vp broadcasts its vertex as msg
to all linked V. In the second round, each Vi vertex receives
msg from its in zFEdge edge and then redirects each msg to
all out yEdge edges. In the third round, for each msg vertex
vy receives from the Vr vertex, add the corresponding index
edge (msg.vertex, vs). Then, based on generated index edges,
we construct the index graph. Obviously, the complexity of this
algorithm is bounded by the xFdge and yFEdge edges of the
Vo vertices.

Since Algorithm 1 is developed based on BSP model, it
can be easily parallelized in Hadoop or Spark. In order to

Input: G(V, E), G;(V;, E;, V), e

Description: e is the edge that needs to be inserted in to G
Output: output result: graph index

1: Egor = null

2: while 1 do

3: add e to F and F,;

4: if F,.;.collect_time>Max or F.; is full then
5: for each e € F,.; do

6: if e.inV € V then

7: for v € V & (e.inV,v) €E do

8: add (e.outV,v) to E;

9: if e.outV € Vr then

10: for v € V & (v,e.outV) €E do
11: add (v,e.inV) to E;

12: reset Fyoy

13: return G;

reuse the space, we store the edges of the index graph in the
original graph and specifically label them to distinguish from
original edges. When some indices will not be used in the
future, users can delete them and leave space for creating new
indices.

2) Index Graph Updating Algorithm: In order to support
the online biological scientific data collecting and updating,
we design an incremental algorithm Algorithm 2 in this
section. Incremental computing, is a software feature which,
whenever a piece of data changes, attempts to save time by
only recomputing those outputs which depend on the changed
data[20], [21]. In this algorithm, we use the incremental
computing to compute the indexes for the newly added data.

The algorithm is designed to implement in a periodic way.
It continually receives the edges in E,.; until the collecting
time reach a bound, i.e, Max = 10s, then it checks the status
of the original graph and the index graph and updates the
index graph when really needed. After that, it resets the Fs.¢,
continues to receive edges, and so on. That the algorithm only
monitors the adding of edges is because the adding of vertices
will not change the status of the index graph.

Moreover, because of its periodic processing, it can be easily
integrated into existed systems, i.e., Spark, and allows the data
processed in a streaming way.

IV. THE TYPE-FIXED TWO-STEP INDEX GRAPH FOR
BIOLOGICAL DATASETS

The WDCM is a popular data resource in the microorganism
research. As shown in Fig. 3, it includes microorganisms such
as taxonomy, protein, gene, genome, and the relations between
these organisms. In this section, we discuss the graph traversal
query example in detail that starts from taxonomy vertices to
other vertices such as pathway, enzyme, or gene ontology,
and show how the type-fixed two-hop index graph optimize
the queries of the WDCM.
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Fig. 3. The WDCM Datasets Graph

A. The Model of the Index Graph

This section first abstracts the query pattern of the WDCM
biological datasets. For example, query the enzyme using the
fixed taxonomy id. Through analyzing the datasets in Fig. 3,
the access pattern can be defined as follows.

Viawon <—(2-tazon)-Vyene-(z-enzyme)->Vepnyme.

The Viazon, Vgene, and Vep.yme represent the vertices and
the <—(z-taron)— and —(x-enzyme)—> represent edges
that connected these vertices. The traversal that passes gene
is starting from taxonomy to gene through the in z-taxon
edges and then to enzyme through the out x-enzyme edges.
Consider the query pattern of enzyme, we construct a two-hop
fixed type index graph Gep.yme-

Genzyme({‘/taxon; Venzyme}; Ewdcma Vgene)-

As shown in Fig.3, the taxz-gene-enzyme-index is the
index edges of Gensyme. Since the edges between the tax-
onomy and the gene can only be of x-tazon and the edges
between the gene and the enzyme can only be of z-enzyme.
Consider the definition of the index graph, if there is an taz-
gene-enzyme-index edge in Fep.yme, then there must be a
traversal path from taxonomy to enzyme via gene and vice
versa.

Similarly, this work defines Gpathway for the multi-hop
pathway query pattern and G, for the multi-hop gene on-
tology query pattern, respectively.

For pathway, the query pattern is represented as
Viazon <—(2-taxon)—Vyene—(z-pathway)—>Vpathway-

same graph space. Compared to the overall existed edges, the
increased index edges are limited.

B. The Optimization of Graph Traversal

Based on the constructed index graph, this work takes the
query of enzyme as an example to show how to optimize the
graph traversal.

Here is a graph traversal query derived from WDCM. It
starts from a taxonomy vertices, and then to gene vertices
through the z-taxon edges, and then to the enzyme vertices
through the x-enzyme edges. The optimization of the graph
query based on the index graph Gy .yme iS quite easy.

Without index graph, the query needs to traverse first
through x-taxon edges and then through x-enzyme edges.
Here is a gremlin traversal sample for enzyme count oper-
ations. Because the vertices might be randomly distributed
across multiple machines, this traversal is time-consuming and
will incur many communications.

9.V ().has(“vertexID”, “.../taxzonomy/1270")
an(z-taxon).has(“type”, “GeneNode”)
.out(z-enzyme).dedup().count()

With index graph, the query can directly reach the object
enzyme vertices through traversing the tax-gene-enzyme-
index index edge. We replace the two-hop graph traversal
with the one-hop index traversal and thus reduce the amount
of communications and the query time. The corresponding
gremlin code is presented as follows.

9.V ().has(“vertexID”, “../taxonomy/1270”)

out(tax-gene-enzyme-index).dedup().count()

Since the one-hop traversal is efficient in most distributed
graph databases, with the index graph proposed in this work,
the graph query can be completed in real time without further
index optimization and hardware enhancement.

V. EXPERIMENTAL EVALUATION

This section chooses typical biological WDCM multi-hop
queries to verify the effectiveness of the proposed index graph.
We separately run these queries on both the single-machine
system and the multi-machine system, and compare their
results with that of Virtuoso.

A. Experimental Environments

As shown in Table II, the experimental platform is com-
posed of five servers connected by infiniband. We allocate
4 machines for Hadoop and HBase, and 1 for Elasticsearch.
Titan which runs on Hbase is used to store both the original
datasets graph and the index graph. In order to simplify the
design, we do not apply the explicit graph partition and rely on
the Titan to distribute vertices to multiple machines. Although

The index graph is Gpathway({v;‘/azona V}Jathway}y Evdem, Vgene)-these systems are not new, the index graph proposed in this

For gene ontology, the query pattern is represented as
‘/tamon<*(z'tax0n)*‘/protein*(x'go)7>‘/go-
The index graph is Ggo(Viazon, Vgo, Ewdem: Vprotein)-

We run the index graph construction algorithm to generate
these index graphs. As illustrated by Feature 2, we store all
these index graphs and the original WDCM datasets in the

work makes these subsystems work in a coordinated way. If
not specified specifically, following experiments are run on
this platform.

The basic information about WDCM biological datasets is
presented in Table III. It is a very large graph, its current
Dataset I has 300 million triples and its future Dataset II has 3



TABLE II
EXPERIMENTS ENVIRONMENTS

Processors E5-2603 v3 @1.60GHz x 12
Memory 32GB
Disk File System XFS
Hadoop 1.2.1

Gremlin Query Engine
Single-Node Graph Database
Multi-Node Graph Base

developed based on titan 1.0.0
Titan with BerkeleyDB
Titan with hbase-0.98.0.23-hadoop1

TABLE III
WDCM DATASET STATISTICS

Name WDCM

Author WEFCC-MIRCEN World Data Centre for Microorganisms
Discipline Microorganisms

Type RDF
Dataset 1 300 millions Triples
Dataset 11 3 Billion Triples

billion triples. It manages relations between micro organisms
such as taxonomy, protein, gene, pathway, and genome and
represents them as edges in graph. According to our analysis,
there are many super vertices in this datasets, some even have
more than 100 thousand edges.

This work chooses 18 two-hop queries, including infor-
mation query and count query between taxonomy and other
micro organisms such as enzyme, pathway, gene ontology,
etc. We label these queries as enzymel, enzyme2, enzyme3,
pathwayl, pathway?2, pathway3, gol, go2, and go3, separately.
Each query starts from the fixed taxonomy vertex and ends in
the objective vertices. The query implementations using the
index graph in this work are developed based on gremlin. The
corresponding query patterns are defined in Section IV.

B. The Basic Info and Count Query

This section compares the index graph based traversal im-
plementation and the original graph traversal implementation
using Dataset I that includes 300 million triples and Dataset
IT that includes 3 billion triples. In order to strictly remove
the affection of database cache, we restart the graph database
Titan for each query implementation. The original graph
method refers to the original two-hop graph traversal based
implementation, and the index graph method refers to the
proposed index graph based implementation.

We first run the queries on Dataset I that has 300 million
triples and present the results in Fig. 4. Fig. 4 presents the
query time for both the index graph based implementation and
the original graph implementation. The figure shows that the
graph index based implementation uses much less time than
the original graph implementation. This is because the amount
of traversals with index graph is reduced to a much lower
level, mostly no more than 10% of the original queries. So for
the enzyme and pathway query, the indexed implementation is
nearly accelerated more than 10 times. For the x-go where the
traversals are a little complex and cannot be fully covered by
the index graph, the acceleration is not obvious, but we still
obtain more than 3 times speedup for info query. Although we

do not use Titan’s sort-favor property index and not specifically
optimize the index graph for the count operations, the count
query time is still significantly reduced.

We further run the same queries on Dataset II that has 3
billion triples and obtain similar results. As shown in Fig.
5, the index graph can make the graph database system
response the query in milliseconds mostly through decreasing
the traversal hops.

This section further compares the query time for both the
small dataset Dataset I and the large dataset Dataset II using
the same query benchmark. The results are presented in Table
IV and show that the query time is maintained constantly
when the data size scales from 300 million to 3 billion. It
illustrates the potential of the proposed index graph in tackling
the continually growing biological datasets such as WDCM.

C. The Query Comparison with Virtuoso

In this section, we further compare the query implementa-
tions between Virtuoso and the proposed index graph using
Dataset I. The virtuoso method refers to the Virtuoso based
query implementation and the index graph method refers
to the index graph based query implementation. The WDCM
Virtuoso database is well tuned and runs on a server that has 64
GB memory. Because it is providing online services, it cannot
be reconfigured to remove the affection of the cache. The index
graph is run on the original platform and is restarted each time
to remove the cache affection. We compare the query time of
both the Virtuoso and the index graph implementation.

Fig. 6 shows that the time of graph index is mostly smaller
than that of the Virtuoso implementation, with performance
improvement ranging from 1.3x to 10x for most 18 queries.
That the use of more time for go’s count query is because it
requires more traversals than that the index graph covered.

We further analyze the single-node implementations and the
multi-node implementations of the index graph, and compare
their query time with that of Virtuoso. The query is to find
out the count of enzyme, pathway, and go vertices that related
to fixed taxonomy. The single-machine index graph is run on
Titan with BerkeleyDB. The multi-machine index graph is run
on Titan with Hbase.

As shown in Fig.7, for both the count query of enzyme and
pathway, the query time is nearly the same for both the single-
machine and the multi-machine implementations, respectively.
For go query, the Hbase based multi-machine implementation
uses more time to complete than both BerkeleyDB and Vir-
tuoso single-machine implementations. It shows that in one
side the query of go has many traversals not covered by the
traversal pattern employed; in the other side, the traversal
of multi-machine based graph database is more expensive.
In these cases, the index graph and its ideas are especially
important for the real time query optimizations.

D. Index Maintainance and Update Overheads

This section evaluates the maintaining and updating over-
heads of the graph index using Dataset I and Dataset II.
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Fig. 5. The Query Implementations using Dataset II
TABLE IV
INDEX GRAPH BASED WDCM COUNT QUERY TIME(TIME/MS)
Enzymel | Enzyme2 | Enzyme3 | Pathwayl | Pathway2 | Pathway3 | Gol Go2 | Go3
Dataset 1 534 67 47 480 51 43 2355 1211 894
Dataset II 539 80 54 494 57 47 1790 877 608
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Fig. 6. Index Graph vs Virtuoso on Dataset I
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TABLE V
THE STORAGE OVERHEAD - INDEX EDGES

enzyme | pathway 2o
Dataset | 86387 61882 497190
Dataset II | 138280 61882 497190

The index maintainance overheads mainly come from the
storing of the index edges. We count the generated index edges
for the three query patterns discussed in Section IV and mark
them as enzyme, pathway, and go, respectively. We present
them in Table V. Table V shows that the number of index
edges of the type-fixed index graph is comparatively small.
Each index edge just uses one or several bytes, thus the overall
storage overhead for query patterns of enzyme, pathways, or
go is at megabyte level. It means the storing and the querying
of these edges will be efficient.

We further evaluate update overheads of the index graph
when inserting new edges. The benchmark data are 1,482
enzyme edges, 17,267 pathway edges, and 3,801 go edges
generated based on WDCM datasets. The update algorithm
is Algorithm 2 that inserts edges at the granularity of F.,
that contains up to 1000 edges. The performance bottleneck
of Algorithm 2 is the throughput of inserting edges and
updating the index graph. We evaluate the average update time
for inserting 1000 edges using single thread. The results are
presented in Table VI. Table VI shows that the update time
needed is not significantly increased for larger Dataset II. It
needs at most 2 seconds to update with a E,.; of new edges.
Moreover, the update time depends on the query pattern. For
simple query pattern(i.e.,enzyme), the overheads are small.
But for complex query pattern(i.e, go), the overheads are of
multiple times larger.

TABLE VI
THE INDEX UPDATING OVERHEADS PER EACH 1000 EDGES
(TIME/SECONDS)
enzyme | pathway g0
Dataset 1 0.002 0.759 0.931
Dataset 11 0.004 1.495 1.201

E. Further Discussion

These experimental results show that the proposed index
graph can effectively reduce the biological multi-hop query
time when the query’s graph traversals are fully covered. The
index graph is suitable for the multi-hop query of very large
biological datasets that requires massive costly graph traver-
sals, i.e., WDCM, especially on distributed graph databases.

During the optimization of the graph traversals, we find
that for some vertices that have more than 1,000,000 edges,
the graph traversals that pass these edges are time-consuming
and always be failed due to backend and network errors. To
our surprise, the index graph addresses these problems by
filtering or redirecting the traversals of these edges and thus
obtains the much stable query implementation. Note that we
do not manually partition the graph to optimize the edge-cut
and vertex-cut. It seems that the index graph can lower the
expectations of graph partition, which is hard to handle for
non-professional users.

The size of the index graph is related to the volume of
vertices that satisfy the query pattern. Complex queries always
impose sophisticated type-fixed constraint, the size of the
index graph is often small. But for general two-hop queries that
impose nearly no constraint, the size of the index graph can
be very large as any two-hop connected vertex could satisfy
the pattern. The challenging points are how to build the index
graphs in acceptable time and maintain these index graphs
efficiently. For small graphs, the sequential implementation
is enough. For very large graphs, we suggest incorporating
existed BSP frameworks such as Hadoop-gremlin or Spark
GraphX to generate the index. It may take several hours or
more to complete the computation, which depends on the ver-
tices volume and the query complexity. For the maintaining of
multiple index graphs, we present Feature 2 that shows how
to merge the index graphs and the original graph efficiently.

The shortcoming of the type-fixed index graph is that
users have to abstract the query pattern and submit it to the
system for generating index graph. For the temporal queries
that are not fully indexed, it might suffer from the massive
graph traversals. This is because for very large graphs, the
complexity of automatically generating the temporal multi-hop
traversal indices is super-linear[7] and thus we instead choose
to generate the fixed type indices defined by users.

Compared to the state of the art works that use memory to
realize the real-time query of large graphs[22], our index graph
is much lighter and should be easier to carried out on systems
without large memory. Compared to the join approaches that
use both subgraph matching and graph traversal[23], the index
graph works at a higher level and uses index to reduce the
graph traversals.

VI. CONCLUSION

In this paper, we propose an index graph to address perfor-
mance problems of the multi-hop query of large biological
datasets. It is used to index relations between the starting
vertices and the object vertices. With the index graph, we can
complete the query in one hop without repeatedly traversing
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