
A Key-Value Based Approach to Scalable Graph
Database ⋆

Zihao Zhao1,2, Chuan Hu1,2, Zhihong Shen1(�), Along Mao1,2, and Hao Ren1

1 Computer Network Information Center, Chinese Academy of Sciences, China
2 University of Chinese Academy of Sciences, China
{zhaozihao,huchuan,bluejoe,almao,rh}@cnic.cn

Abstract. An increasing number of applications are modeling data as
property graphs. In various scenarios, the scale of data can differ signifi-
cantly, ranging from thousands of nodes/relationships to tens of billions
of nodes/relationships. While distributed native graph databases can
cater to the management and query requirements of large-scale graph
data sets, they tend to be relatively cumbersome for small-scale data
sets. This motivates us to develop a lightweight, scalable graph database
capable of handling data across different scales. In this paper, we pro-
pose a method for constructing a graph database based on key-value
storage, outlining the process of mapping graph data to key-value stor-
age and executing graph queries on the key-value storage. We imple-
mented and open-sourced a graph database based on RocksDB, namely
KVGDB, which can manage data in an embedded fashion and be eas-
ily scaled to distributed environments. Experimental results demonstrate
that KVGDB can effectively meet the management and query require-
ments of graph data sets, even at the scale of billions of nodes/relationships.

Keywords: Graph Database · Graph data · Key-Value Database.

1 Introduction

Graph databases have emerged as a powerful tool for modeling and analyz-
ing complex relationships between data entities in various applications, such as
social networks [6] and knowledge graphs [2]. The data scale in these applica-
tions varies greatly, ranging from thousands of nodes/relationships to tens of
billions of nodes/relationships. Traditional distributed native graph databases,
such as TigerGraphDB [3] and ByteGraph, are based on distributed environ-
ments and can be cumbersome when dealing with small-scale datasets. Cloud
databases like Amazon NeptuneDB [1] cannot be deployed locally and are dif-
ficult to meet the requirements of embedded applications. We are motivated to
develop a lightweight, scalable graph database capable of handling data across
different scales. Key-value databases store data in the form of key-value pairs,

⋆ This work was supported by the National Key R&D Program of China(Grant
No.2021YFF0704200) and Informatization Plan of Chinese Academy of Sci-
ences(Grant No.CAS-WX2022GC-02)



2 Zihao Zhao, Chuan Hu et al.

boasting excellent scalability. They can be used in embedded environments as
well as expanded to distributed environments to address storage and query re-
quirements of large-scale datasets. Additionally, key-value databases exhibit high
performance, with the cost time of prefix search unaffected by the scale of data.

This paper proposes a key-value based approach for building scalable graph
databases that can efficiently manage and query graph data of various scales.

2 Methodology

In key-value databases, both the key and the value are byte arrays. Taking
RocksDB as an example [4], it manages data based on Log-Structured Merge
Trees (LSM). Each write operation generates a memtable in memory, which,
upon reaching a certain size, is written to an SST file on disk. By default, the
key-value pairs in the SST file are sorted by their keys. This sorting scheme
enables key-value databases to achieve good performance in precise search and
prefix search operations. Typically, a prefix iterator is used for prefix search
with a time complexity of O(m+k), where m is the number of keys satisfying
the prefix condition, and k is the length of the longest key. Therefore, when
designing storage formats and retrieval methods for graph data on key-value
databases, it is crucial to fully exploit the inherent data order and the fast prefix
search capabilities of key-value databases.

2.1 Storage

Suppose a property graph could be simply represented as G =< N,R >, where
N is the set of nodes and R is the set of relationships (a.k.a. edges). The key-value
storage model (as illustrated in Fig. 1) of G could be represented as KVG =<
NS,NLS,RS,RTS,ORI, IRI, PID, PI >, where:

– NS: NodeStore, where the key is the combination of LabelID and NodeID,
and the value is a byte array containing all the property information of the
node. If a node has m labels (m>1), then in the NodeStore, the node is stored
as m key-value pairs, each corresponding to a label. Specifically, if a node
has no label, the storage engine will set its LabelID to an ID representing
an empty label.

– NLS: NodeLabelStore, it stores the label information of nodes, where the
key is the combination of NodeID and LabelID, and the value is blank.

– RS: It is the RelationshipStore, where the key is the RelationshipID (i.e.
RelID in Fig. 1), and the value is a byte array containing all the property
information of that relationship.

– RTS: RelationTypeStore, where the key is the combination of TypeID and
RelationshipID of a relationship, and the value is an empty byte array.

– ORI: OutRelationIndex, it is the outgoing edge index, built for relationships
to accelerate graph query processing for a specific relationship direction. The
key consists of source node ID (SrcID), relationship type ID (TypeID) and
destination node ID (DstID) in order, and the value is the relationship IDs
for all the relationships correspond to the key.



A Key-Value Based Approach to Scalable Graph Database 3

NodeStoreLabelID NodeID FullNode

4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes

LabelIDNodeID Empty

TypeID RelID Empty

SrcID TypeID DstID RelIDs

SrcIDTypeIDDstID RelIDs

PropIDLabelID IndexID

RelID FullRelationship

NodeLabelStore

RelationshipStore

OutRelationshipIndex

InRelationshipIndex

RelationTypeStore

PropertyIndexDic

PropertyIndex

4 Bytes 4 Bytes

Legend
Fixed Length Non-Fixed Length Scale

TypeCodeIndexID NodeIDsValue

Key Value

Fig. 1. Mapping Graph Data to Key-Value Storage

– IRI: InRelationIndex, it is the incoming edge index, which modifies the order
of the key in the OutRelationIndex to destination node ID, relationship type
ID and source node ID, with the rest remaining unchanged.

– PID: PropertyIndexDic, it is the embedded property index dictionary, stor-
ing IndexIDs of embedded property indexes. An index is uniquely identified
by a LabelID and a PropID (i.e., the ID of the property name). The query
engine can determine whether an index exists based on the LabelID and
PropID through the PropertyIndexDic; if it exists, further property filtering
can be performed in the PropertyIndex (i.e. PI).

– PI: PropertyIndex, it is the embedded property index, used for storing prop-
erty indexes. In PropertyIndex, the key is a combination of IndexID, Type-
Code, and Value, where IndexID refers to the property index ID described
in PropertyIndexDic, TypeCode refers to the type encoding of the property
value (such as integers, floating-point numbers, etc.) and Value refers to the
actual value of the property. The value contains the IDs of all nodes with
property values equal to Value under the constraints of the given LabelID
and PropID.

2.2 Query

Figure 2 and Figure 3 present three query operations on KVG, namely finding
nodes by label, finding nodes by ID, and finding nodes by property. The retrieval
operations of relationships share the similar process. More generally, other graph
operations can be derived from the steps:



4 Zihao Zhao, Chuan Hu et al.

Find all nodes labeled Person:

Get the labelID of Person: 11

PerfixSearch(1)2

Get the Node data by iterator3

Get node by nodeId: 3

Find the labelId of nodeId: 31

Get node by labelId and nodeId2

labelID

2

Person

Student

labelName

1

propertyId

2

name

age

propertyName

1

3 <binary data>2

2 <binary data>2

<binary data>

value

<binary data>

nodeId

3

1

1

labelId

1

13

labelId

2

1

2

nodeId

1

Key Value

Metadata

NodeStore

NodeLabelStore

Fig. 2. Find Nodes based on label and ID on KVG

– Find all nodes labeled as Person. The process is shown in Figure 2. First,
obtain the LabelID of Person (assumed to be 1) from the metadata. Then,
in the NodeStore, perform a prefix search to find the starting position with
LabelID=1. Next, traverse the data downwards until the first node with a
different LabelID is encountered.

– Find a node with a specific ID (assumed to be 3). The process is shown in
Figure 2. First, in the NodeLabelStore, perform a prefix search to find the
first key-value pair with NodeID=3, and get the node’s LabelID(1). Then,
based on the LabelID(1) and NodeID(3), perform a precise search in the
NodeStore to find the corresponding data item and get the full node.

– Filter nodes by the property value, as shown in Figure 3. Suppose the query
condition is to find all nodes labeled as Person with the age value of 31.
First, obtain the LabelID(1) and PropID(2) from the metadata. Then, in the
PropertyIndexDic, get the indexID(2). Finally, perform a prefix search on
the PropertyIndex based on the IndexID(2), TypeCode(2), and PValue(31)
to find the corresponding nodeIDs.

3 Implementation and Experiments

We implemented KVG based on RocksDB [4] and named it KVGDB. KVGDB
has been open-sourced and adopted as the storage engine of PandaDB 3 [7].
KVGDB adopts Cypher [5] as the query language. We evaluate the performance
of KVGDB on the LDBC-SNB dataset. LDBC-SNB [8] is currently the most
popular property graph benchmark, which includes a scalable social-network

3 https://github.com/grapheco/pandadb-v0.3



A Key-Value Based Approach to Scalable Graph Database 5

Filter nodes based on their property value, 
eg: MATCH(n:Person) where n.age = 31

Find id of Person and age: (1, 2)1

Find the indexId of (Person, age): 22

Compose Prefix by indexId(2), 
typeCode(2), property value (31)3

Prefix Search (2, 2, 31)4

Get nodeId by iterator5

labelID

2

Person

Student

labelName

1

propertyId

2

name

age

propertyName

1

2

indexId

1

propId

2(age)

1(Person)

1(Person)

labelId

1(name)

2 332(int) 2

1

3

nodeId

1,3

2

31

Cindy

Bob

value

Alice

2(int)2

1(string)1

typeCode

1(string)

1

1

indexId

1(string)

Key Value

Metadata

PropertyIndexDIc

PropertyIndex

Fig. 3. Filtering Nodes Based on Property on KVG

dataset. The datasets used in this study are detailed in Table 1. The experiment
is carried out on a server with 384GB memory, 28 CPU-cores and 10TB hard
disks.

Table 1. Details of Dataset

Dataset Num of nodes Num of edges Size on the disk

D1 83,298,515 507,720,806 38GB
D2 2,523,446,454 17,016,067,035 1.24TB

Table 2 lists the basic graph query operations tested in this experiment and
their execution times on different datasets. In the table, KVGDB on D1 and
KVGDB on D2 represent the cost times for KVGDB to execute operations on
datasets D1 and D2 (see table 1), respectively. The Baseline represents the cost
time for Neo4j-community-3.5.6 (one of the most successful graph databases) to
execute the queries on dataset D1. We did not evaluate Neo4j on D2, because
Neo4j failed to load D2 within 12 hours.

The experimental results show that KVGDB performs better than the base-
line, the execution time of most operations is within 10ms, and the execution time
of each operation on the two datasets are quite similar. This indicates that the
operation time does not increase significantly with the growth of data size, which
is consistent with the characteristics and design expectations of KV databases.
Notably, according to the data in the first row of the table, the execution time
for obtaining all nodes (getAllNodes) and all relationships (getAllRelationships)
is much higher than that for other operations. This is because the operation
to retrieve all nodes requires deserialization of all node data (and similarly for
relationships), making it a traversal operation. The execution time is already
close to the limit under existing hardware conditions.



6 Zihao Zhao, Chuan Hu et al.

Table 2. Cost Time of Graph Operation on the KVGDB

Operation
Baseline
on D1

KVGDB
on D1

KVGDB
on D2

Operation
Baseline
on D1

KVGDB
on D1

KVGDB
on D2

getAllNodes 396s 36.8s 1225s getAllRelationships 1218s 123s 6972s
allLabels 3ms 12ms 15ms getRelationType 9ms <1ms <1ms
addLabel 9ms 4ms 4ms addRelationType 15ms 4ms 21ms
allPropertyKeys 1ms <1ms <1ms allPropertyKeys 1ms <1ms <1ms
getPropertyKey 8ms <1ms <1ms getPropertyKey 10ms <1ms <1ms
addPropertyKey 11ms <1ms 2ms addPropertyKey 7ms <1ms <1ms
getNodeById 8ms 6ms 7ms getRelationById 7ms <1ms 12ms
hasLabels 15ms <1ms <1m relSetProperty 7ms 16ms 88ms
nodeAddLabel 12ms 2ms 6ms relRemoveProperty 8ms 3ms 13ms
nodeRemoveLabel 9ms 6ms 31ms findToNodeId 7ms <1ms <1ms
nodeSetProperty 11ms 4ms 7ms findFromNodeId 7ms <1ms 8ms
nodeRemoveProperty 9ms 5ms 8ms addRelation 10ms 8ms 9ms
addNode 34ms <1ms 2ms deleteRelation 12ms 3ms 2ms
deleteNode 16ms <1ms 2ms findOutRelations 145ms 3ms 2ms

findInRelations 901ms 3ms 5ms

4 Conclusion

In this paper, we proposed a method for mapping graph data to key-value storage
and implemented a scalable graph database based on RocksDB, namely KVGDB.
It can manage data in an embedded fashion and be easily expanded to distributed
environments for large-scale datasets. In the future, we will study graph pattern
matching algorithms suitable for the features of KVGDB.

References

1. Bebee, B.R., Choi, D., Gupta, A., Gutmans, A., Khandelwal, A., Kiran, Y., Mallidi,
S., McGaughy, B., Personick, M., Rajan, K., et al.: Amazon neptune: Graph data
management in the cloud. In: ISWC (P&D/Industry/BlueSky) (2018)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD international conference on Management of data. pp.
1247–1250 (2008)

3. Deutsch, A., Xu, Y., Wu, M., Lee, V.: Tigergraph: A native mpp graph database.
arXiv preprint arXiv:1901.08248 (2019)

4. Dong, S., Kryczka, A., Jin, Y., Stumm, M.: Rocksdb: Evolution of development
priorities in a key-value store serving large-scale applications. ACM Transactions
on Storage (TOS) 17(4), 1–32 (2021)

5. Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V.,
Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.: Cypher: An evolving query
language for property graphs. In: Proceedings of the 2018 international conference
on management of data. pp. 1433–1445 (2018)

6. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network?
the structure of the twitter follow graph. In: Proceedings of the 23rd International
Conference on World Wide Web. pp. 493–498 (2014)

7. Shen, Z., Zhao, Z., Wang, H., Liu, Z., Hu, C., Zhou, C.: PandaDB: Intelligent man-
agement system for heterogeneous data. Int. J. Softw. Informatics 11(1), 69–90
(2021)

8. Szárnyas, G., Waudby, J., Steer, B.A., Szakállas, D., Birler, A., Wu, M., Zhang,
Y., Boncz, P.: The ldbc social network benchmark: Business intelligence workload.
Proceedings of the VLDB Endowment 16(4), 877–890 (2022)


