
S2CTrans: Building a Bridge from SPARQL to
Cypher⋆ ⋆⋆

Zihao Zhao1,2, Xiaodong Ge1,2, Zhihong Shen1(�), Chuan Hu1,2, and Huajin
Wang1

1 Computer Network Information Center, Chinese Academy of Sciences, China
2 University of Chinese Academy of Sciences, China

{zhaozihao,gexiaodong,bluejoe,huchuan,wanghj}@cnic.cn

Abstract. In graph data applications, data is primarily maintained us-
ing two models: RDF (Resource Description Framework) and property
graph. The property graph model is widely adopted by industry, leading
to property graph databases generally outperforming RDF databases in
graph traversal query performance. However, users often prefer SPARQL
as their query language, as it is the W3C’s recommended standard. Con-
sequently, exploring SPARQL-to-Property-Graph-Query-Language trans-
lation is crucial for enhancing graph query language interoperability and
enabling effective querying of property graphs using SPARQL. This pa-
per demonstrates the feasibility of translating SPARQL to Cypher for
graph traversal queries using graph relational algebra. We present the
S2CTrans framework, which achieves SPARQL-to-Cypher translation
while preserving the original semantics. Experimental results with the
Berlin SPARQL Benchmark (BSBM) datasets show that S2CTrans suc-
cessfully converts most SELECT queries in the SPARQL 1.1 specification
into type-safe Cypher statements, maintaining result consistency and im-
proving the efficiency of data querying using SPARQL.

Keywords: RDF · Property graph · SPARQL · Cypher

1 Introduction

Currently, knowledge graph storage primarily relies on two models: Resource
Description Framework (RDF) [5] and property graph [1]. RDF databases, such
as Jena, maintain the former, while property graph databases, like Neo4j, manage
the latter.

In general, property graph databases outperform RDF databases in graph
traversal and pattern matching tasks. However, users tend to favor SPARQL for
data querying, as it is a long-standing W3C recommended standard language.

⋆ This work was supported by the National Key R&D Program of China(Grant
No.2021YFF0704200) and Informatization Plan of Chinese Academy of Sci-
ences(Grant No.CAS-WX2022GC-02)

⋆⋆ Zihao Zhao and Xiaodong Ge contributed equally to this paper.

2 Zihao Zhao, Xiaodong Ge et al.

The 2019 W3C Workshop on Web Standardization for Graph Data [11] called for
bridging the gap between RDF and property graph query languages, allowing
systems to manage data using the property graph data model while enabling
users to query data with SPARQL.

Differences in semantic representation and processing logic exist between
SPARQL and the property graph query language, represented by Cypher [3],
making the standardization process challenging. There are three main challenges
of this translation: (a) Proving the semantic equivalence of SPARQL and Cypher
in graph traversal query. (b) Resolving the conflict between RDF model and
property graph model storage through schema mapping and data mapping. (c)
Designing the pattern matching mapping and solution modifier mapping method
to translate SPARQL into Cypher.

In this study, we establish a graph relational algebra-based semantics for
SPARQL and introduce S2CTrans, a provably semantics-preserving SPARQL-
to-Cypher translation method. We then evaluate S2CTrans using comprehensive
query features on public datasets. This paper introduces the S2CTrans frame-
work, which offers a mapping method for pattern matching and solution mod-
ifiers, enabling the translation from SPARQL to Cypher. We perform a com-
prehensive query test on large-scale datasets to evaluate the performance im-
provement of Cypher in graph databases after translating SPARQL using the
S2CTrans framework.

Fig. 1. Overview of SPARQL-to-Cypher translation.

The diagram of our work is illustrated in Figure 1. At the data level, we imple-
ment a syntactic and semantic transformation of RDF graph to property graph
using the neosemantincs plug-in [10] developed by Neo4j Labs. This involves stor-
ing RDF triples into property graphs as nodes, relationships, and properties. At
the query level, the figure illustrates the first two contributions discussed above.
The dashed arrow ① represents the graph relational algebra of Cypher, while the
dashed arrow ② represents the mapping-based semantics of SPARQL defined in
[8]. Our contributions are represented by the dashed arrows ③, ④, and ⑤, which

S2CTrans: Building a Bridge from SPARQL to Cypher 3

define a graph relational algebra based semantics of SPARQL. Additionally, the
solid arrows represent our contributions to the definition of the SPARQL-to-
Cypher translation, which includes the pattern matching mapping (PMM) and
the solution modifier mapping (SMM).

2 S2CTrans

2.1 System Architecture

We design and implement S2CTrans, a framework which could equivalently
translate SPARQL into Cypher. S2CTrans has been open-sourced3. S2CTrans
takes SPARQL query as input, and generates Cypher statement with the orig-
inal semantics by using Jena ARQ [9] parse strategy, graph pattern matching
and solution modifiers transformation strategy and Cypher-DSL [7] construction
strategy. The S2CTrans works as a five-step execution pipeline:

– Step 1: The input SPARQL query is first parsed by the Jena ARQ module.
It can check for syntax errors, verify whether it is a valid SPARQL query
and generate an abstract syntax tree (AST) representation.

– Step 2: After obtaining the AST parsed by SPARQL, OpWalker is used
to access the graph pattern matching part and solution modifier part from
bottom up.

– Step 3: PMM maps the SPARQL graph pattern gps to the Cypher combin-
ing graph pattern cpc, and then SMM maps the SPARQL solution modifiers
Ms to Cypher clause keywords Kc.

– Step 4: Cypher-DSL generates the final conjunctive traversal and constructs
Cypher AST according to the pattern element type and operator priority.

– Step 5: Finally, the Cypher AST is rendered as a complete Cypher statement
by Renderer. This statement can be directly queried in Neo4j with the
neosemantics plug-in to get the result of property graph.

2.2 Pattern Matching Mapping

Graph pattern matching is the most basic and important query operation in
graph query languages [2]. Due to page constraints, the graph pattern mapping
algorithm is introduced in the appendix of S2CTrans-tech-report [12]. The map-
ping function PMM in the algorithm translates SPARQL graph pattern into
Cypher graph pattern elements.

2.3 Solution Modifiers Mapping

After the graph pattern is obtained by PMM algorithm, conditions are usually
added to modify the solution of graph pattern matching. Based on the semantic
equivalence of SPARQL and Cypher in graph relational algebraic expressions,

3 https://github.com/MaseratiD/S2CTrans

4 Zihao Zhao, Xiaodong Ge et al.

SMM algorithm constructs a mapping table (as shown in Table 1) to implement
the mapping of SPARQL solution modifiers Ms to Cypher clause keywords Kc.
This table summarizes graph query modification operations and the correspond-
ing graph relational algebra, as well as the forms of SPARQL and Cypher clause
construction. The variables and expressions have been mapped to graph pattern
elements in PMM algorithm.
Table 1. A consolidated list of SPARQL solution modifiers and corresponding Cypher
clause keywords.
Operation Algebra SPARQL Solution Modifiers - Ms Cypher Clause Keywords - Kc

Selection σcondition(r) FILTER(Expr1 &&(||) Expr2) WHERE Expr1 and(or) Expr2
Projection πx1,x2,...(r) SELECT ?x1 ?x2 ... RETURN x1, x2, ...

De-duplication δx1,x2,...(r) SELECT DISTINCT ?x1 ?x2 ... RETURN DISTINCT x1, x2, ...

Restriction λl
s(r) LIMIT l SKIP s LIMIT l SKIP s

Sorting ς↑x1
,↓x2

,...(r) ORDER BY ASC(?x1) DESC(?x2) ORDER BY x1 ASC, x2 DESC

Through PMM algorithm and SMM algorithm, we get the Cypher graph
pattern and clause keywords. Cypher-DSL constructs Cypher AST according to
graph pattern elements and operator precedence. Finally, we use Renderer to
construct a complete Cypher statement.

3 Experiments

3.1 Evaluation criteria

We execute SPARQL queries on several top-of-the-line RDF databases, and exe-
cute translated Cypher queries on graph database Neo4j. We evaluate S2CTrans
by the translation speed, query execution time and result consistency.

3.2 Experimental setup

Dataset: This experiment uses the Berlin SPARQL Benchmark(BSBM) dataset
recommended by W3C, which consists of synthetic data describing e-commerce
use cases, involving categories such as products, producers, etc. We generated
10M triples respectively by BSBM-Tools, and the corresponding property graph
version is mapped using the neosemantics plug-in. The details of dataset are
introduced in the appendix of S2CTrans-tech-report [12].
Query statements: We created a total of 40 SPARQL queries, covering 30 dif-
ferent query features. These queries were selected after systematically studying
the semantics of SPARQL queries [8]. The queries are detailed in the appendix
of S2CTrans-tech-report [12].
System Setup: We execute the query statements on the following databases to
evaluate the performance improvement of S2CTrans:Property Graph Database:
Neo4j v4.2.3 RDF Databases: Virtuoso v7.2.5, Stardog v7.6.3, RDF4J v3.6.3,
Jena TDB v4.0.0 All experiments were performed on the following machine con-
figurations: CPU: Intel Core Processor (Haswell) 2.1GHz; RAM: 16 GB DDR4;
HDD: 512 GB SSD; OS: CentOS 7. In order to ensure the reproducibility of
the experimental results, we provide the experimental script, dataset and query
statement4.
4 https://github.com/MaseratiD/S2CTrans

S2CTrans: Building a Bridge from SPARQL to Cypher 5

3.3 Result Evaluation

According to the evaluation criteria described above, we perform SPARQL query
on RDF databases and the translated Cypher query on property graph database
Neo4j on the dataset. Finally, we compare and analyze the query results, make
sure the consistency. Among them, each query runs an average of 10 times to get
the average value. Due to the limited space of the paper, the statements transla-
tions and query results are shown in the appendix of S2C-tech-report [12]. The
average translation time of S2CTrans of 40 queries on BSBM-10M is 23.7ms.
Compared with the query time, it accounts for a small proportion. We metic-
ulously conducted tests on datasets of various scales under both cold-start and
warm-start scenarios, and all tests yielded similar results. Figure 2 presents the
query execution time during the system’s cold-start phase. Among most query
statements, Neo4j performs better than the RDF databases. Moreover, in the
queries with multi-hop paths and long relationships, the performance of Neo4j is
1 to 2 orders of magnitude higher than RDF database. The main reason is that
RDF databases spend a lot of time in executing join operations and forming
execution plans, while Neo4j uses index-free adjacency, which greatly improves
the query efficiency.

The experiment results prove that the proposed S2CTrans is successful in
equivalent translating and executing SPARQL queries. S2CTrans enables the
users to query property graph by SPARQL.

Fig. 2. Property graph database V.S. RDF database - BSBM Dataset 10M

4 Conclusion

In this paper, we introduce S2CTrans, a novel approach that supports SPARQL-
to-Cypher translation. This method can convert most SPARQL statements into
type-safe Cypher statements. Moreover, we employ property graph databases
and RDF databases to conduct experimental evaluations on large-scale datasets,
validating the effectiveness and applicability of our approach. The evaluation
highlights the substantial performance gains achieved by translating SPARQL
queries to Cypher queries, particularly for multiple relationship and star-shaped
queries. Although S2CTrans currently has several limitations, it represents an

6 Zihao Zhao, Xiaodong Ge et al.

important step toward promoting the standardization of graph query languages
and enhancing the interoperability of data and queries between the Semantic
Web and graph database communities. In the future, we plan to further refine
S2CTrans to support more SPARQL translations and investigate the translation
from Cypher to SPARQL.

References

1. Renzo Angles. The property graph database model. In Proceedings of the 12th
Alberto Mendelzon International Workshop on Foundations of Data Management,
volume 2100, 2018.

2. Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and
Domagoj Vrgoc. Foundations of modern query languages for graph databases. ACM
Comput. Surv.,50(5):68:1–68:40, 2017.

3. Francis, Nadime, et al. ”Cypher: An evolving query language for property graphs.”
Proceedings of the 2018 international conference on management of data. 2018.

4. Jürgen Hölsch and Michael Grossniklaus. An algebra and equivalences to transform
graph patterns in neo4j. In Proceedings of the Workshops of the EDBT/ICDT 2016
Joint Conference, EDBT/ICDT Workshops 2016, volume 1558 of CEUR Workshop
Proceedings, 2016.

5. Graham Klyne, Jeremy J. Carroll, and Brian McBride. Rdf 1.1 concepts and abstract
syntax, W3C Recommendation, 2018.

6. József Marton, Gábor Szárnyas, and Dániel Varró. Formalising opencypher graph
queries in relational algebra. In Advances in Databases and Information Systems -
21st European Conference, ADBIS 2017, volume 10509 of Lecture Notes in Com-
puter Science, pages 182–196. Springer, 2017.

7. Gerrit Meier and Michael Simons. The neo4j Cypher-dsl. https://neo4j-
contrib.github.io/Cypher-dsl/current/, 2021.

8. Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity of
SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

9. K. Wilkinson. Jena property table implementation. In: Smart PR, ed. Proc. of the
2nd Int’l Workshop on Scalable Semantic Web Knowledge Base Systems, pages
35–46, 2006.

10. Neo4j Labs. neosemantics (n10s): Neo4j RDF & Semantics toolkit.
https://neo4j.com/labs/neosemantics/, 2021.

11. Taelman, Ruben, Miel Vander Sande, and Ruben Verborgh. ”Bridges between
GraphQL and RDF.” W3C Workshop on Web Standardization for Graph Data.
W3C. 2019.

12. Zihao Zhao, Xiaodong Ge, and Zhihong Shen. S2CTrans: Building a Bridge from
SPARQL to Cypher. arxiv.

